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Abstract Remote photoplethysmography (rPPG) 
allows remote measurement of the heart rate using 
low-cost RGB imaging equipment. In this study, we 
review the development of the field of rPPG since its 
emergence in 2008. We also classify existing rPPG 
approaches and derive a framework that provides an 
overview of modular steps. Based on this framework, 
practitioners can use our classification to design 
algorithms for an rPPG approach that suits their 
specific needs. Researchers can use the reviewed and 
classified algorithms as a starting point to improve 
particular features of an rPPG algorithm. 
 
Keywords Affective computing, Heart rate 
measurement, Remote, Non-contact, Camera-based, 
Photoplethysmography 
 
1  Introduction 
 
As a source of information about a subject’s physical 
and affective state, heart rate measurement (HRM) is of 
interest to researchers, medical practitioners, and retail 
users alike. A classical application of HRM is for 
monitoring in a hospital environment. However, 

recently, access to HR data has been necessary for 
applications related to personal fitness [1], electronic 
commerce [2,3], financial trading [4], and corporate 
technostress [5]. 

A measured HR is derived from a volumetric 
measurement (plethysmogram) of the heart as the 
number of contractions per minute. Typically, HRM is 
conducted using methods that require skin contact. In 
the case of electrocardiograms (ECG), this contact is 
necessary to measure electrical changes on the skin. 
The type of photoplethysmogram (PPG) available on 
some smart watches uses skin contact to obtain a 
plethysmogram optically. Although they are 
noninvasive, these techniques are obtrusive in that they 
require contact with the human skin, which can be 
detrimental to subjects with sensitive skin (e.g., 
neonates). It can also be irritating (e.g., for subjects 
having to wear a fitness tracker) or distracting (e.g., 
when worn in a professional environment). In these 
example scenarios, using a less obtrusive, contactless 
means of measurement would be beneficial. 

During the last decade, considerable research has 
been published on HRMs that do not require skin 
contact. The developed techniques use a color model 



 
 

based on red, green, and blue (RGB) imaging to acquire 
a signal from a distance of up to several meters. These 
techniques are thus commonly referred to as remote 
photoplethysmography (rPPG) because of their 
similarity to traditional PPG. Research has shown that 
reliable HRM can be achieved using low-cost, 
consumer-grade digital cameras and ambient light 
sources. The proposed methods capture the subject’s 
head on video (e.g., using a webcam), from which the 
plethysmographic signal is recovered using several 
image processing techniques and transformations. 

Two main approaches have emerged from existing 
studies on rPPG: 1) HRM based on periodic variation 
of the subject’s skin color, and 2) HRM based on 
periodic head movement. Both of those observable 
phenomena are caused by the human cardiac cycle and 
thus allow researchers to infer an HRM from an 
estimated plethysmographic signal. 

Since rPPG was first proposed in 2008 [6], the focus 
has shifted from demonstrating feasibility in optimal, 
lab-like conditions to a variety of more complex 
algorithms for realistic scenarios. The existing review 
studies in this field, such as [7–9], provide a theoretical 
background and overview of the field. However, none 
of them focuses entirely on low-cost cameras nor 
provides a structured classification of existing 
approaches. Therefore, our contributions are as follows: 

1) to provide an overview of research conducted in 
this field; 

2) to present a technical account of the typical 
components of rPPG algorithms and identify the 
main challenges; and  

3) to classify published studies by their choice of 
algorithm and contributions to the field. 

Finally, we also provide suggestions for future research 
in the field of rPPG. 
 
2  Research methodology 
 
A clear consensus concerning the name of the field that 
we discuss in this study has yet to emerge. While 
researching, we came across 15 different terms used by 
different authors. These typically employ lexical 
combinations that begin with such words as “remote”, 
“non-contact”, “camera-based”, “video-based”, 

“contactless”, “contact-free”, “imaging” and end with 
such terms as “photoplethysmography”, “heart rate 
measurement”, “heart rate estimation”, “heart rate 
monitoring”, as well as various abbreviations thereof. 
We chose to use the term “remote 
photoplethysmography” (rPPG) because it is by far the 
most frequently used (ca. 50%) and is an original name 
[6] for this class of algorithms. 

In the process of identifying a wide range of relevant 
published studies, we used previously listed terms to 
conduct searches in Google Scholar. To this search field 
we added studies that have cited the two seminal 
studies on rPPG [6,10] by reverse-searching citations. 

Because we review studies on rPPG that used 
low-cost face video, we include only studies whose 
goal was to obtain HRM using videos of subject faces. 
Recording equipment must be of commercial grade. 
Therefore, those studies that used professional 
equipment such as high-speed cameras were excluded. 
As of this writing, we found 35 publications that match 
our criteria. Fig. 1 provides an overview of the 
publication count by year. 

 

Fig. 1 Number of studies by year 
 
3  Background 
 
Phenomena exploited in rPPG are closely related to the 
cardiac cycle. During each cycle, blood is moved from 
the heart to the head through the carotid arteries. We 
will see that this periodic inflow of blood affects both 
the optical properties of facial skin and the mechanical 
movement of the head, enabling researchers to measure 
HR remotely. 

The interplay of light and living tissue is complex, as 
many processes such as scattering, absorption, and 
reflection are at play. Research has shown that 
reflection of light is dependent on, among other factors, 
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blood volume change and blood vessel wall movement 
[11,12]. Given suitable illumination, changes in light 
reflected from facial skin are thus observable, as the 
blood flow and variation of blood volume follow the 
cardiac cycle. Traditionally, dedicated light sources 
with red or near-infrared wavelengths [11] have been 
used to obtain a (contact) photoplethysmogram. 
However, recent research has shown that ambient light 
can be sufficient to obtain a plethysmographic signal [6] 
(as illustrated in Fig. 2a). 

 
Fig. 2 Illustration of phenomena used in rPPG 
 

More recently, some research has focused on 
remotely capturing the mechanical impact of blood 
flowing in through the carotid arteries at either side of 
the head [13]. The idea of exploiting the Newtonian 
reaction of the human body to the displacement of 
blood dates back to the 1930s [14]. This approach [13] 
considers the head-neck system and the trunk as a 
sequence of stacked inverted pendulums and surmises 
that the opposite reaction to blood inflow causes a 
displacement of the head by approximately 5 mm 
(illustrated in Fig. 2b). Of the two approaches, that 
based on skin color variation, being the original, has 
been discussed in many more studies. 
 
4  Early work and recent development 
 
Hertzman and Spealman first noted in 1937 that the 
variation in light transmission of a finger could be 
detected by a photoelectric cell [15]. The formative 
period of rPPG research began in 2008 with Verkruysse 
and colleagues first showing that video recordings of a 
subject’s face under ambient light contain a signal 
sufficiently rich to measure the HR [6]. They asked 
volunteers to sit motionless while their faces were 

recorded using inexpensive consumer cameras from a 
distance of 1-2 m. Fig. 3 illustrates the typical setup of 
such studies. 

 
Fig. 3 Typical setup of an rPPG application 
 

Verkruysse at al. used color recordings of different 
quality. For example, a resolution of 640 x 480, which 
is a standard graphic mode of the video graphics array 
(VGA), and a frame rate of 30 frames per second (fps) 
were used. In these recordings, the region of interest 
(ROI) was manually selected. From the pixels 
contained in the ROI, the raw signal was computed per 
frame as the mean value of each of the RGB color 
channels. To determine power spectral density of the 
signal, Verkruysse et al. used the fast Fourier transform 
(FFT) algorithm. They showed that the signal for the 
green channel contains the strongest plethysmographic 
signal, clearly indicating the fundamental HR frequency, 
up to its fourth harmonic. This is consistent with the 
fact that hemoglobin absorbs green light better than it 
does red and blue. 

Paving the way for future research was the first study 
with the explicit goal of measuring HR using video 
recorded with a standard laptop webcam [10]. This 
study by Poh et al. used a face detector to track a 
subject’s face frame by frame, with a box containing 
the subject’s face as the ROI and a moving window of 
30 s to achieve a continuous measurement. Improving 
on this approach in [6], all three channels of RGB 
information were used. Blind source separation (BSS) 
estimated the plethysmographic signal as a linear 
combination of all three raw signals. The parameters for 
this combination were estimated using independent 
component analysis (ICA). However, Poh et al. always 
chose the second component produced by ICA as the 
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plethysmographic signal, a shortcoming they later 
addressed in an improved version of their algorithm 
[16]. The HR was estimated as the frequency with the 
highest response after an FFT. 

With the general feasibility of rPPG being 
established, an increasing number of publications have 
been produced in subsequent years, as shown in Fig. 11). 
Initial contributions include comparing alternative 
methods for BSS and different selections regarding 
color channels [17,18], as well as adding temporal 
filters before BSS is performed [16,17]. An approach 
using an ROI and neural-network-based skin detection 
proposed by [19] allows for more accurate 
measurement. Another study [20] compared various 
linear and nonlinear techniques for BSS and found that 
Laplacian eigenmap produces the best results. 

The plethysmographic signal in a subject’s face can 
be visualized by decomposing the video sequence into 
different spatial frequency bands and then magnifying a 
desired frequency band using bandpass filtering [21]. 
When this process is applied to facial videos, slight 
temporal changes are detectable. This shows that HR 
and individual heart beats can be extracted from the 
amplified signal [22]. 

A fundamentally different approach used to obtain a 
raw signal was presented by Balakrishnan et al. in [13]. 
Instead of relying on color change, this study 
demonstrated the possibility of extracting a 
plethysmographic signal from the periodic motion of 
the subject’s head, which occurs because of the influx 
of blood to the head. Balakrishnan et al. tracked an 
array of feature points in the subject’s face frame by 
frame, recording the longitudinal trajectories. After 
performing temporal filtering to remove unwanted 
frequencies, they used BSS to obtain a sufficiently 
strong plethysmographic signal to estimate the HR. One 
weakness of this approach is the fact of signal loss 
during bigger motions. Two additional studies explored 
this approach. One [23] showed that a single tracking 
point can provide sufficient information for HRM. The 
other [24] achieved an improved performance by 
replacing the FFT with discrete cosine transform (DCT) 
in the estimation step. 

                                                        
1) The lower number of publications in 2015 may be attributed to 
publication and indexing lag. 

Until then, the research on rPPG remained in an early 
stage. Although accurate measurements were shown to 
be possible using two signal sources, this was 
accomplished under mostly controlled conditions using 
stationary subjects. In more recent research, the focus 
has been on more realistic settings containing naturally 
moving or exercising subjects and more challenging 
illumination. The two recently explored problems are 
reducing noise from subject motion and addressing low 
signal strength (e.g., resulting from illumination and 
dark skin tone). 

A group at Philips Research [25] addressed the 
problem of moving subjects with respect to the light 
source. They argued that an optimal fixed combination 
of bandpassed RGB channel signals can be found based 
on a ratio of normalized color signals when assuming 
“standardized” skin, thus eliminating noise derived 
from specular reflection. A deficiency of this approach 
was that it excluded BSS from the algorithm’s design. 
The researchers then further formalized and improved 
their approach [26] by proposing a combination with 
BSS techniques. 

As other researchers [27] have found, the choice of 
ROI has a major influence on the quality of the 
plethysmographic signal, as not all areas in the face 
exhibit the same signal quality. The most recent studies 
have focused on more intelligent ROI selection and 
tracking to achieve motion robustness. Detection of 
facial landmark points is typically the basis for a more 
detailed ROI (e.g., to define [28–32] and track [29,31] 
custom ROIs). An approach by Feng et al. [33] found 
an array of points in the subject’s face that can be 
subsequently tracked in order to update the ROI on the 
subject’s forehead. Consistent with the findings of [27], 
Feng et al. later improved their algorithm to use the 
area of the cheeks [34]. Further reductions in noise 
were made possible by the so-called adaptive bandpass 
filter adopted by some authors [32–35], the cut-off 
frequencies for which were based on past HR estimates. 
Custom additional filtering steps introduced by some 
authors also aimed at reducing noise (e.g., [29] used an 
adaptive filter to reduce noise from illumination 
changes using background illumination as a reference). 

Further recent developments include variations in the 
number of used raw signals, such as the inclusion of 



 
 

cyan and orange frequencies [30,36]. In a different 
approach [31], the facial region was divided into many 
small ROIs that yielded an array of signals from the 
green channel, each of which was later combined using 
a weighted average based on a goodness metric. 
Similarly, the researchers in [37] stochastically selected 
an array of points and combined them using an 
importance-weighted Monte Carlo approach. The use of 
BSS, followed by component selection, have recently 
been optimized using machine learning techniques 
[38,39]. 

Despite the fact that these recent improvements allow 
rPPG algorithms to be applied to more realistic 
situations, virtually all studies have continued to focus 
on proof of concept using pre-recorded videos. 
Although one study [40] presented concepts for 
real-time applications, only one other work reported 
data from a real-time rPPG application [41]. 
Signal-to-noise ratios and error rates have typically 
been reported, but comparing different approaches is 
difficult. This is because most authors have tended to 
create their own test scenarios using a variety of 
cameras and often have not specified the algorithms 
used for compression, thus making reproduction 
difficult. An exception to this is a study that 
benchmarked rPPG algorithms using videos from a 
publicly available database [29]. However, no 
consistent practice has yet been adopted. 
 
5  rPPG algorithm classification 
 
We give a general classification of existing rPPG 
approaches based on the type of signal (color or 
motion). We then propose a general algorithm 
framework (see Fig. 4) and classify the chosen 
approaches accordingly. An overview of the 
corresponding classifications is given in Table 1. 

This framework is based on the biological measuring 
chain [42]. We subdivide a typical rPPG algorithm into 
three key steps: (i) extraction of the raw signal from 
several video frames, (ii) estimation of the 
plethysmographic signal, and (iii) HR estimation. Each 
of these steps has several components that may be 
subject to various approaches or can be skipped as in 
existing studies. 

 
Fig. 4 Generalized rPPG algorithm framework 

 
  The majority of studies (91%) used facial color 
variation as the raw signal for rPPG. This periodic color 
variation occurs as the skin’s light absorption changes 
in accordance with the cardiac cycle. Through the use 
of an RGB camera, these slight color variations can be 
remotely registered. The remaining 9% of studies were 
based on periodic head movements, which can likewise 
be monitored using remote imaging. These head 
movements represent an equal and opposite reaction to 
blood being pumped to the head through the aorta with 
each cardiac cycle. In the following subsection, we 
describe how we use our proposed general framework 
to classify all studies, while highlighting those methods 
that are based on color variation. 
 
5.1 Signal extraction 
 
ROI detection. Because the rPPG algorithms we 
consider are based on the human face, ROI detection is 
necessary to determine the bounds of the face in a video 
frame. This information is typically an intermediate 
step from which a more accurate ROI is later defined. 
In some of the literature, especially in earlier studies in 
which the subject was asked to sit motionless (e.g., 
[6,13,17]), the bounds of the face were selected 
manually from one of the first frames. 

The most frequently used method is the algorithm of 
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Viola and Jones [43], which is a 
machine-learning-based approach that uses a cascade of 
simple features to classify faces. The popularity of this 
approach is partially due to its availability in the 
OpenCV computer vision library, which many authors 
have used to implement their rPPG algorithms. A 
bounding box of the face is returned when using the 
Viola-Jones algorithm. 

As an alternative to face detection, Lee et al. [19] 
proposed using an algorithm to detect skin regions. 
Skin-like pixels were selected using a 
neural-network-based classifier. Additional areas such 
as the neck and arms may be included in the ROI in this 
manner. The drawback of using only skin detection is 
the presence of additional noise when objects are 
present that have color similar to the skin, as Lee et al. 
themselves acknowledged. Therefore, some studies 
(e.g., [25]) used skin selection within the bounds of the 
face given by the Viola-Jones algorithm. 

Recent approaches dealing with subject motion 
require more detailed information about face location. 
Facial landmark points provide the basis for more 
detailed ROI definitions as well as ROI tracking. Using 
active appearance models (AAM) [44], which is a 
statistical model of the human face in which appearance 
is matched to the given video frame, results in a set of 
coordinates of known facial landmarks. After face 
detection using the Viola-Jones algorithm, [28] and [32] 
included this step in their rPPG algorithm. Three other 
algorithms for facial landmark detection have been used: 
[29] applied discriminative response map fitting 
(DRMF) [45] after face detection; [31] used an 
algorithm for deformable model fitting; and [46] and 
[30] used an algorithm that combines a 
regression-based approach with a probabilistic 
face-shape model [47]. The last two studies directly 
used facial landmark detection without prior face 
detection. 
 
ROI definition. The ROI is the area within a video 
frame that contains pixels providing the raw signal for 
the algorithm. Utilizing information from Viola-Jones 
or manual face detection, researchers have the option of 
simply using the given bounding box of the face as the 
ROI [6,17,18,39,48,49]. Some authors also selected an 

experimentally determined fixed subset of the bounding 
box. As the bounding box from the Viola-Jones 
algorithm typically includes background pixels on 
either side, a common method is to include 60% of its 
width [10,16,20,38]. Other studies [13,24,50] used 
different experimentally obtained subsets of the 
bounding box as the ROI. Two notable subsets of the 
bounding box that may be determined solely from the 
bounding box or additionally by the coordinates of the 
eyes are the forehead [6,17,33] and cheeks [34], having 
been identified as promising regions [27]. 

Researchers working with facial landmark points 
used these to define more exact and robust ROIs. Using 
nine landmark points, [29] defined a region that 
includes the cheeks and no background pixels, similar 
to [30] and [36], which defined a region that includes 
the forehead and the area below the eyes. 

Another recent approach involves defining multiple 
ROIs and generating one RGB signal each for 
subsequent analysis. For example, [28] and [32] used 
landmark points to define several ROIs representing 
regions of the face. The approaches of [27,31,35,37,51] 
are more rigorous, each using a large array of small 
ROIs. These studies select a subset of available ROIs 
using a criterion of signal quality, thus yielding a 
dynamic ROI. 

 
ROI tracking. Noise caused by subject motion may 
render the signal useless for rPPG. Thus, the goal of 
ROI tracking is to ensure that the pixels contained in 
the ROI belong to a skin region invariant to subject 
motion. Some earlier studies that assumed the subject 
was stationary did not use tracking, particularly when 
manual ROI detection was involved [6,17]. 

A straightforward method to achieve ROI tracking is 
to simply re-detect the ROI for every frame. Two-thirds 
of the authors achieved ROI tracking using this method 
(Table 1). However, drawbacks exist with this method. 
Because the bounding box returned by the frequently 
used Viola-Jones object detector is not very exact, ROIs 
based on its fluctuating output may in turn cause 
unwanted noise. Considering computational complexity, 
it is obviously suboptimal to re-run ROI detection for 
every frame, especially if real-time applications are 
intended. 



 
 

Through use of a set of tracking points or objects and 
a tracking algorithm, the location of the ROI can be 
updated frame by frame without having to re-detect the 
ROI. The good-features-to-track algorithm [52], used 
by the authors of [29] and [31] as tracking points, 
returns the most prominent corners within the ROI. 
Using the Kanade-Lucas-Tomasi (KLT) feature tracker 
based on [53], the authors estimated an affine transform 
to update the ROI based on subject motion. Similarly, 
[33] and [34] used the KLT tracking algorithm based on 
the points identified using the speeded-up robust 
features (SURF) [54] algorithm. The authors in [19] 
used kernel-based object tracking [55] to update the 
location of the skin regions included in their ROI. For 
each ROI corresponding to a single pixel, [35] used 
tracking-by-detection with kernels (CSK) [56] to 
compensate for rigid motion and an optical flow 
algorithm proposed by Farnebäck [57] to compensate 
for non-rigid motion. 

 
Raw signal extraction. The raw signal is extracted 
from a video frame by frame according to the ROI 
position. For color-based methods, this yields series 
!"($) for the color channels & ∈ {), +, ,}. Values are 
calculated by averaging the respective color channel of 
all pixels contained in the ROI of the frame at time $. 
This is known as spatial pooling and has the purpose of 
averaging out camera noise contained in single pixels. 
The number of ROIs and selection of channels for 
which this step is performed vary across studies. In the 
case of very small ROIs, the image can be 
downsampled to avoid noise [35]. To visualize temporal 
changes, [21] first decomposed an image into different 
spatial frequency bands without explicitly extracting 
single values per frame. They referred to this approach 
as localized spatial pooling. 

Extraction of the raw signal for methods based on 
head motion requires selecting tracking points within 
the ROI. All three author teams that worked with this 
type of method used the good-features-to-track 
algorithm [52]. Although [13] and [24] used an array of 
tracking points, [23] used only the best identified point. 
Using the KLT tracking algorithm, the authors 
computed the trajectory of each point. The raw signal 
then consisted of series .",/($) for tracking point & 

and axis 0. Whereas [13] and [24] used just the vertical 
axis, [23] used both the vertical and horizontal axes. 

Table 1 gives the number of series and the signal (in 
brackets) to which they correspond (e.g., 3 (RGB) for 
the three channels of red, green, and blue). The table 
also gives the number of ROIs (e.g., n x 1 (y) denoting 
n tracking points for the y axis). 

 
5.2 Signal estimation 

 
Filtering. Despite ROI tracking, the raw signal may 
still contain unwanted noise, which depends on subject 
motion, illumination changes, and other factors. Using 
information about the frequencies of these expected 
noise sources and the range of feasible HR frequencies, 
researchers typically apply one or more digital filters to 
the raw signal. The goal is to increase the signal-to–
noise ratio and thus improve the quality of the 
estimated plethysmographic signal. Given a raw signal 
consisting of multiple series, the filters are normally 
applied to each series before dimensionality reduction. 
However, some authors apply filters after 
dimensionality reduction, whereas some do so both 
before and after. In Table 1, “(1)” indicates filtering 
before and “(2)” filtering after dimensionality 
reduction. 

Because the level of raw signals (e.g., color space 
value or pixel trajectory) has no meaning when 
assessing periodicity, a common first step is to 
centralize or normalize the raw signals. Centralizing is 
a process in which the mean 12 is subtracted from a 
signal 3. Normalization additionally divides the signal 
by its standard deviation 42. 

Both unwanted high and low frequency noise can be 
eliminated using bandpass filtering. This requires an 
assumption regarding the band of frequencies that is 
feasible for human HR. A common choice of band is 
[0.7 Hz, 4 Hz] [10,16,29,34], which corresponds to an 
HR between 42 and 240 beats per minute (bpm).  

Additional methods that remove unwanted high and 
low frequency noise include the moving average filter 
and the detrending method. The moving average filter 
is a rolling window that averages a given number of 
values, thus representing a low-pass equivalent. The 
detrending method [58] is based on a smoothness priors 



 
 

approach and represents a simple and efficient means of 
removing the long-running trend from a signal. It can 
be seen as a high-pass equivalent. In Fig. 5, we give a 
simple example of the removal of low- and 
high-frequency noise from the green channel obtained 
from a subject’s forehead. 

 
Fig. 5 Exemplary values from a simple rPPG application 
using only the green channel 
 
A novel component in recent publications is an adaptive 
bandpass [33–35] that dynamically changes the cutoff 
frequencies based on previously estimated HR, thus 
guiding the algorithm to produce consistent HR 
estimates. Some authors have experimented with 
additional noise reduction by eliminating outliers in the 
signals. For example, [29] eliminated the noisiest 
segments in a considered signal as measured by 
standard deviation. Similar approaches were followed 
by Wei et al. [20], who eliminated outliers in the signal, 
and Wang et al. [35], who pruned spatially by excluding 

non-skin pixels and outliers with respect to the color 
space. To address noise caused by illumination changes 
(e.g., playing a movie on a screen), [29] used the 
background illumination as reference and applied an 
adaptive filter to remove illumination noise from the 
signal. 
 
Dimensionality reduction. Most authors used a raw 
signal that consists of more than one single series (e.g., 
signals corresponding to the RGB channels). It is 
assumed that the raw signals contain a one dimensional 
plethysmographic signal 5 $ , which can be 
represented as a linear combination of these raw signals 
using a weighted sum. Estimating the weights for this 
combination has proven difficult and is one of the most 
debated issues in the literature on rPPG. 

The first approach proposed by Poh et al. [10] used 
an algorithm for BSS to determine the optimal 
combination of raw signals. They chose ICA, which 
separates the raw signals into independent, 
non-Gaussian signals. In their original rPPG algorithm, 
Poh et al. determined that the second component 
produced by ICA is typically the most periodic one, 
which seems to correspond to the plethysmographic 
signal 5($). Several other authors adopted this method 
[18,28,48]. Theoretically, however, the order that ICA 
components appear in is random, which is why Poh et 
al. later introduced a selection criterion in the improved 
version of their rPPG algorithm [16]. This criterion 
chooses the component with the highest peak in the 
frequency power spectrum (i.e., a component with a 
high periodicity [16,30,36,50]). Another related 
criterion chooses the highest periodicity according to 
the percentage of spectral power accounted for by the 
first harmonic [13,23,24]. The authors in [33] used 
correlation with the reference sine function to 
determine the best component. A second popular 
algorithm for BSS, first used by [17] and later by 
[13,24,35], is the principal component analysis (PCA), 
which separates raw signals into linearly uncorrelated 
components and orders them based on variance. 
Criteria used for component selection in ICA can be 
equally applied to components produced by PCA. 
Machine learning was also used by [38] to select the 
most appropriate component produced by ICA.  
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Table 1 Classification of published rPPG algorithms 

  Signal extraction Signal estimation 
Heart rate 
estimation 

Comment 

Paper 
(Year) 

Signal 
type 

ROI 
detect. 

ROI 
definit. 

ROI 
track. 

Raw 
signal 
extr. 

Raw 
signal 
dim. 

Filtering Dim. red.  Contribution/deficiencies 

[6] 
(2008) 

Color Manual BB, FH  
Spatial 
pooling 

3 (RGB) Centralize, Bandpass   
First showing feasibility of rPPG/Data processed 

manually 
[10] 

(2010) 
Color VJ SBB RE 

Spatial 
pooling 

3 (RGB) (1) Normalize ICA FFT 
Using face detection, BSS with ICA, HR 

estimation/Fixed component selection after ICA 
[17] 

(2011) 
Color Manual BB, FH  

Spatial 
pooling 

2 (RG/ 
GB/RB) 

(1) Bandpass ICA, PCA FFT 
Comparing ROI types and BSS techniques/No 

automatic process 
[16] 

(2011) 
Color VJ SBB  

Spatial 
pooling 

3 (RGB) 
(1) Detrend+Normalize 

(2) MA + Bandpass 
ICA 

Peak 
detection 

Improvement over [10] with temporal filtering and 
intelligent component selection 

[18] 
(2012) 

Color VJ BB RE 
Spatial 
pooling 

3 (RGB), 
1 (G) 

(1) Normalize ICA FFT 
Feasibility using smartphones as video source and for 

computation/No real-time measurement in mobile apps 
[21] 

(2012) 
Color    LSP  Bandpass   

Visualize and amplify small temporal changes/Only 
visualization of the pulse 

[22] 
(2012) 

Color  
Many 
ROIs 

 LSP 
n x 3 

(RGB) 
(1) Bandpass 

Importance 
metric 

FFT, Peak 
detection 

Use signal amplification proposed in [21] to measure 
the HR 

[19] 
(2012) 

Color SK 
Skin 

regions 
KBOT 

Spatial 
pooling 

3 (RGB)  
Fixed 
linear 

FFT 
Propose skin detection and tracking/Possibly 

additional noise from areas similar to skin 
[20] 

(2013) 
Color VJ SBB RE 

Spatial 
pooling 

3 (RGB) 
(2) Eliminate outliers + 

MA + Bandpass 
Laplacian 
Eigenmap 

Peak 
detection 

Comparing BSS methods/No filter before BSS 

[13] 
(2013) 

Motion 
VJ, 

Manual 
SBB  

GFTT + 
KLT 

n x 1 (y) (1) Bandpass PCA 
FFT, Peak 
detection 

First proposing an approach based on head 
motion/Prone to noise from larger motions 

[23] 
(2013) 

Motion Manual   
GFTT + 

KLT 
2 (x, y) 

(1) Normalize + 
Bandpass 

ICA FFT 
Based on horizontal and vertical trajectory of one 

pt./Prone to noise from larger motions 

[25] Color VJ + Skin RE Spatial 3 (RGB) (1) Normalize + Fixed FFT Fixed signal combination based on normalized 



 
 

(2013) SK regions pooling Bandpass linear skin/Not taking advantage of BSS 

[50] 
(2013) 

Color 
Face 

detect. 
SBB RE 

Spatial 
pooling 

3 (RGB)  ICA STFT Using the STFT for HR estimation/No filtering 

[28] 
(2013) 

Color 
VJ + 
AAM 

10 
ROIs 

RE 
Spatial 
pooling 

3 (RGB) 
(1) Detrending + 

Normalize 
ICA FFT Integration of AAM 

[48] 
(2013) 

Color Manual BB RE 
Spatial 
pooling 

3 (RGB) 
(1) Lowpass + 
Normalize + 

Detrending + MA 
ICA, PCA FFT 

Compare BSS techniques, find ICA to be most 
consistent/Manual face detection 

[27] 
(2013) 

Color  
Many 
ROIs 

 
Spatial 
pooling 

n x 1 (G)   FFT 
Determining the optimal ROI selection/No actual 

HRM conducted 
[24] 

(2014) 
Motion VJ SBB  

GFTT + 
KLT 

n x 1 (y) 
(1) Moving average + 

Bandpass 
PCA DCT 

Using DCT instead of FFT for HR estimation/Prone to 
noise from larger motions 

[29] 
(2014) 

Color 
VJ + 

DRMF 
FLM 
based 

GFTT 
+ KLT 

Spatial 
pooling 

1 (G) 
IR + NRME + 

Detrending + MA + 
Bandpass 

 FFT 
Robustness against motion and illumination 

changes/Only using the green channel 

[38] 
(2014) 

Color VJ SBB RE 
Spatial 
pooling 

3 (RGB) 
(1) Detrending + 

Normalize 
ICA FFT + ML 

Using different machine learning methods to extract 
HR from features 

[39] 
(2014) 

Color 
Face 
detec. 

BB RE 
Spatial 
pooling 

3 (RGB) (1) Bandpass 
ICA + 

fixed linear 
+ SVR 

FFT + SVR 
Using SVR to extract the HR from frequency domain 

features/No detailed ROI 

[33] 
(2014) 

Color VJ FH 
SURF 
+ KLT 

Spatial 
pooling 

3 (RGB) (1) Adaptive bandpass ICA FFT 
Motion compensation using tracking and adaptive 

bandpass 

[32] 
(2014) 

Color 
VJ + 
AAM 

FLM 
based 

RE 
Spatial 
pooling 

1 (G) 
Outlier removal + 

Centralize + 
Detrending + Lowpass 

 
FFT, Peak 
detection 

Using AAM and custom filtering/Relies on a 
commercial facial analysis framework, only using the 

green channel 
[49] 

(2014) 
Color manual BB  

Spatial 
pooling 

2 (RG) (2) Bandpass 
Fixed 
linear 

FFT 
Using fixed signal combination instead of BSS/Manual 

face detection, no sliding window 
[26] 

(2014) 
Color 

VJ + 
SK 

Skin 
regions 

RE 
Spatial 
pooling 

3 (RGB) 
(1) Normalize + 

Bandpass 
ICA, PCA 
+ fixed lin. 

FFT 
Improvement over [25] by combining the fixed 

dimensionality reduction approach with BSS methods 



 
 

[30] 
(2014) 

Color FLM 
FLM 
based 

RE 
Spatial 
pooling 

5 
RGBCO 

(1) Detrend + 
Normalize 

(2) Bandpass 
ICA 

Peak 
detection 

Extract BVP waveform and systolic and diastolic 
peaks 

[34] 
(2015) 

Color VJ Cheeks 
SURF 
+ KLT 

Spatial 
pooling 

2 (RG) 
(1) Bandpass 

(2) Adaptive bandpass 
Adaptive 

GRD 
FFT 

Improvement over [33] using the cheeks and adaptive 
red-green difference 

[31] 
(2015) 

Color FLM 
Many 
ROIs 

GFTT 
+ KLT 

Spatial 
pooling 

n x 1 (G) (1) Bandpass 
Goodness 

metric 
FFT, peak 
detection 

Increase robustness by tracking an array of small ROIs 

[35] 
(2015) 

Color 
Manual 
+ FLM 

Many 
ROIs 

CSK + 
Farneb

äck 

Spatial 
pooling 

n x 3 
(RGB) 

(1) Spatial pruning + 
Exclude least periodic 
+ Adaptive bandpass 

PCA FFT 
Improve the signal-to-noise ratio by exploiting spatial 

redundancy of the image sensor 

[36] 
(2014) 

Color FLM 
FLM 
based 

RE 
Spatial 
pooling 

5 
RGBCO 

(1) Detrend, Normalize 
(2) Bandpass 

ICA 
Peak 

detection 
Show that a five band camera leads to better 

performance 

[40] 
(2015) 

Color VJ 
Skin 

regions 
KLT 

Spatial 
pooling 

3 (RGB) 
(1) Normalize 
(2) Bandpass 

LDA FFT Propose a real-time approach, use of LDA 

[37] 
(2015) 

Color  
Many 
ROIs 

RE  2 (RG) Erythema transform 
Bayesian 
minim. 

FFT Stochastically selected points and Bayesian estimation 

[41] 
(2015) 

Color VJ Nose KLT 
Spatial 
pooling 

1 (G) 
Bandpass, Kalman 

filter 
 

Peak 
detection 

Real-time application/Only using the green channel 

[51] 
(2015) 

Color VJ 
Many 
ROIs 

Dynam
ic 

Spatial 
pooling 

n x 1 (G) Bandpass 
Overlap 

add 
FFT 

Dynamic ROI automatically adjusting to signal 
quality/Only using the green channel 

[59] 
(2015) 

Color [60] BB [60] 
Spatial 
pooling 

3 (RGB) 
(1) Normalize 

(2) Bandpass + MA 
ICA FFT 

Assess optimal camera distance from 
subject/Non-automated ICA component selection 

[61] 
(2015) 

Color VJ FH [62] 
Spatial 
pooling 

3 (RGB) 
(1) MA + Normalize 

(2) Bandpass 
ICA 

Peak 
detection 

Combine HRM with other physiological information 

Note: VJ: Viola-Jones algorithm; SK: skin detection; AAM: active appearance model; DRMF: discriminative response map fitting; FLM: facial landmark detection; BB: bounding box; 
SBB: subset of bounding box; FH: forehead; RE: re-detection; KBOT: kernel-based object tracking; GFTT: good-features-to-track; KLT: Kanade-Lucas-Tomasi tracking algorithm; 
SURF: speeded-up robust features; CSK: tracking-by-detection with kernels; IR: illumination rectification; MA: moving average; NRME: non-rigid motion elimination; LSP: localized 
spatial pooling; GRD: green-red difference; STFT: short time Fourier transform; ML: machine learning; SVM: support vector machine; SURF: speeded-up robust features 



 
 

Similarly, [39] used support vector regression (SVR) to 
extract the plethysmographic signal !(#) from a set of 
features in the frequency domain. Linear discriminant 
analysis (LDA) was used by [40] to reduce 
dimensionality. They constructed class values from the 
red channel and built the data from the other two 
channels. 

In contrast to the algorithmically determined choice 
of weights through BSS, using fixed weights has been 
proposed by several authors. Although [19] determined 
fixed weights using a brute force technique, others 
derived weights from models of skin illumination. 
Under the assumptions of a standardized skin color, [25] 
proposed a theoretically motion robust method that uses 
all three RGB color channels to build two orthogonal 
color difference signals. These are then combined to 
yield the estimate of !(#). The authors in [25] later 
acknowledged several limitations of their method and 
proposed combining it with BSS to support component 
selection [26]. Similarly, [34] derived an adaptive 
green-red difference (GRD) from a model of the skin 
and its relationship to the plethysmographic signal. This 
GRD is their estimate of !(#). 

A model of light interaction with the human skin, 
which involves a temporal quotient of raw signal values, 
was used by [49] to derive a different estimator for the 
plethysmographic signal. In [37], raw color series from 
single pixels were transformed using a custom 
erythema transform and used to estimate PPG by 
Bayesian estimation. Performance of nonlinear BSS 
techniques were compared by [20]. They found that 
Laplacian eigenmap performed best based on their data. 

 
5.3 Heart rate estimation 
 
Frequency analysis. Given an estimate ! #  of the 
plethysmographic signal, the HR frequency can be 
estimated using frequency analysis. For this purpose, 
this signal, which contains a distinct periodicity, is 
converted to the frequency domain using a discrete 
Fourier transform. The preferred algorithm by most 
authors (Table 1) is the FFT. Exceptions are [24], which  
used the DCT; [29], which used Welch’s method for 
density estimation; and [50], which used the short-time 
Fourier transform (STFT). In the frequency domain, the 

frequency corresponding to the index with the highest 
spectral power is chosen as an estimate for the HR 
frequency. The intuition for this step is given in Fig. 5. 

 
Peak detection. Using individual peaks, extracting 
more information such as HR variability from the 
inter-beat intervals is possible. To refine the signal for 
peak detection, the signal is usually interpolated using a 
cubic spline function [16,30,36]. The peaks can then be 
easily identified using a moving window, as they are 
the maxima within the signal. 
 
6  Applications 
 
Many promising application areas of rPPG algorithms 
(such as medicine and personal fitness) are frequently 
referred to in the reviewed literature. To date, existing 
applications range from simple experiments to 
assessing algorithm accuracy in controlled conditions. 
Researchers typically collect their own data (i.e., a 
video recording of the subject’s face and corresponding 
ground truth measurement) using an established HRM 
method such as PPG or ECG. Thus, virtually all 
published work on rPPG is based on offline 
computations. An online application of an rPPG 
algorithm in an economic scenario was used in a lab 
experiment in [63]. 

Most studies employed between 10 and 20 subjects, 
optimally of both genders, various ages, and skin colors. 
Subjects typically sat at a desk and were given 
instructions to remain motionless (e.g., 
[10,16,17,28,48]) or move in a natural manner (e.g., 
[20,29,38,39]) while performing a task on a computer. 
Recent studies (e.g., [25,32,38,50,64]) also tested 
accuracy using exercising subjects. The camera was 
mounted on a location 0.5–3 m from the subject, who 
was illuminated with a mix of ambient light. Cameras 
used in the experiments varied from built-in and 
external webcams, smartphones, and point-and-shoot 
cameras to digital single-lens reflex cameras and 
mirrorless models. Recorded at between 10 and 30 fps, 
videos were saved in compressed or uncompressed 
form in various resolutions (from VGA to 720p 
resolution). Experiment durations varied from 20 s to 
over 10 min. 



 
 

Table 2 Algorithm applications and reported accuracies 
Paper Subjects Baseline 

method 
Motion RMSE 

[bpm] 

[10] 12 PPG 
S 2.29 
N 4.63 

[16] 12 PPG S 1.24 
[22] 11 ECG S 3.92 
[25] 117 PPG S 0.40 

[50] 1 PPG 
S 2.19 

E 2.26 
[28] 6 ECG S 1.47 
[48] 18 PPG S 7.73 
[29] 10 ECG S 1.27 

[38] 10 ECG 
N 3.64 
E 4.33 

[39] 4 ECG N 7.28 
[65] 15 ECG N 3.10 

[40] 10 PPG 
S 1.53 
N 5.72 

[66] 10 PPG N 0.11 
Note: S: still; N: natural movement; E: exercising 
 
  As argued in Section 4, because of the lack of a 
widely used database of face videos and corresponding 
ground truth data, a comparison of reported results is 
rather difficult, especially given the multitude of 
parameters, with different choices potentially biasing 
the experimental results. Nevertheless, Table 2 provides 
a summary of application data from reviewed studies in 
which the number of subjects, baseline methods, 
motion instructions, and root mean square errors 
(RMSE) have been reported. If no standard case or 
average is given, we report the average of reported 
values. Again, these should be interpreted with care as a 
direct comparison between studies is not possible. As 
expected, when considering studies that tested different 
motion scenarios, errors increase when subject 
activities increase. Given a normal HR of 70 bpm, we 
can see that the reported RMSE is significantly less 
than 10% in most cases. On average, the reported errors 
are higher than those reported for some contact PPG 
[67]. However, the recent progress, especially 
considering motion and illumination robustness, is 
encouraging. 

 
7  Conclusion and research implications 
 
In this study, we addressed the growing phenomenon of 
rPPG. We provided a systematic literature review 
describing the research conducted in this field up to the 
present. We discussed the seminal work that the current 
rPPG literature is largely based on and gave an 
overview of the field’s development over the last 
decade. We showed that a body of literature has 
increased over time as research has progressed and 
interest grown in rPPG for HRM. We described the 
more recent advances in rPPG based on skin color and 
head movement. We also included a technical 
description of the different physical attributes and 
software algorithms for rPPG. For the first time, 
published literature was tabulated based on choice of 
algorithm and contribution to the field. We also 
identified the main challenges in this field of research 
and provided suggestions on future research. 

The two main challenges currently investigated in 
rPPG were identified as: increasing algorithm 
robustness with respect to subject noise and addressing 
low signal strength due to illumination and skin types. 
Many of these challenges have been effectively 
addressed, but the explored use cases are mostly remote 
from realistic real-world scenarios. Specifically, future 
rPPG algorithms must focus on a trade-off between the 
amount of processed information and algorithm 
complexity, because real-time applications will place a 
constraint on computation time. 

Clearly, conducting remote HRM using low cost 
video equipment is possible, and previous studies show 
the increasing sophistication of rPPG. rPPG has a wide 
range of applications and the rise in publications over 
the period of our survey indicates an increasing interest 
in reliable rPPG algorithms. This is attributable to the 
demand for contactless HRM solutions in the medical, 
professional, and consumer sectors. 
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